28 research outputs found

    Eigendecompositions of Transfer Operators in Reproducing Kernel Hilbert Spaces

    Get PDF
    Transfer operators such as the Perron--Frobenius or Koopman operator play an important role in the global analysis of complex dynamical systems. The eigenfunctions of these operators can be used to detect metastable sets, to project the dynamics onto the dominant slow processes, or to separate superimposed signals. We extend transfer operator theory to reproducing kernel Hilbert spaces and show that these operators are related to Hilbert space representations of conditional distributions, known as conditional mean embeddings in the machine learning community. Moreover, numerical methods to compute empirical estimates of these embeddings are akin to data-driven methods for the approximation of transfer operators such as extended dynamic mode decomposition and its variants. One main benefit of the presented kernel-based approaches is that these methods can be applied to any domain where a similarity measure given by a kernel is available. We illustrate the results with the aid of guiding examples and highlight potential applications in molecular dynamics as well as video and text data analysis

    Exact active subspace Metropolis-Hastings, with applications to the Lorenz-96 system

    Get PDF
    We consider the application of active subspaces to inform a Metropolis-Hastings algorithm, thereby aggressively reducing the computational dimension of the sampling problem. We show that the original formulation, as proposed by Constantine, Kent, and Bui-Thanh (SIAM J. Sci. Comput., 38(5):A2779-A2805, 2016), possesses asymptotic bias. Using pseudo-marginal arguments, we develop an asymptotically unbiased variant. Our algorithm is applied to a synthetic multimodal target distribution as well as a Bayesian formulation of a parameter inference problem for a Lorenz-96 system

    Probabilistic models of natural language semantics

    Get PDF
    This thesis tackles the problem of modeling the semantics of natural language. Neural Network models are reviewed and a new Bayesian approach is developed and evaluated. As the performance of standard Monte Carlo algorithms proofed to be unsatisfactory for the developed models, the main focus lies on a new adaptive algorithm from the Sequential Monte Carlo (SMC) family. The Gradient Importance Sampling (GRIS) algorithm developed in the thesis is shown to give very good performance as compared to many adaptive Markov Chain Monte Carlo (MCMC) algorithms on a range of complex target distributions. Another advantage as compared to MCMC is that GRIS provides a straight forward estimate of model evidence. Finally, Sample Inflation is introduced as a means to reduce variance and speed up mode finding in Importance Sampling and SMC algorithms. Sample Inflation provides provably consistent estimates and is empirically found to improve convergence of integral estimates.Diese Dissertation befasst sich mit der Modellierung der Semantik natürlicher Sprache. Eine Übersicht von Neuronalen Netzwerkmodellen wird gegeben und ein eigener Bayesscher Ansatz wird entwickelt und evaluiert. Da die Leistungsfähigkeit von Standardalgorithmen aus der Monte-Carlo-Familie auf dem entwickelten Model unbefriedigend ist, liegt der Hauptfokus der Arbeit auf neuen adaptiven Algorithmen im Rahmen von Sequential Monte Carlo (SMC). Es wird gezeigt, dass der in der Dissertation entwickelte Gradient Importance Sampling (GRIS) Algorithmus sehr leistungsfähig ist im Vergleich zu vielen Algorithmen des adaptiven Markov Chain Monte Carlo (MCMC), wobei komplexe und hochdimensionale Integrationsprobleme herangezogen werden. Ein weiterer Vorteil im Vergleich mit MCMC ist, dass GRIS einen Schätzer der Modelevidenz liefert. Schließlich wird Sample Inflation eingeführt als Ansatz zur Reduktion von Varianz und schnellerem auffinden von Modi in einer Verteilung, wenn Importance Sampling oder SMC verwendet werden. Sample Inflation ist beweisbar konsistent und es wird empirisch gezeigt, dass seine Anwendung die Konvergenz von Integralschätzern verbessert

    A rigorous theory of conditional mean embeddings

    Get PDF
    Conditional mean embeddings (CMEs) have proven themselves to be a powerful tool in many machine learning applications. They allow the efficient conditioning of probability distributions within the corresponding reproducing kernel Hilbert spaces by providing a linear-algebraic relation for the kernel mean embeddings of the respective joint and conditional probability distributions. Both centered and uncentered covariance operators have been used to define CMEs in the existing literature. In this paper, we develop a mathematically rigorous theory for both variants, discuss the merits and problems of each, and significantly weaken the conditions for applicability of CMEs. In the course of this, we demonstrate a beautiful connection to Gaussian conditioning in Hilbert spaces
    corecore